

Note

Microwave assisted synthesis of 1,3,4-oxadiazolyl 1,8-naphthyridines under solvent-free conditions using solid support

K Mogilaiah*, T Kumara Swamy, A Vinay Chandra & N Srivani

Department of Chemistry, Kakatiya University,
Warangal 506 009, India

E-mail: mogilaiah_k@yahoo.co.in

Received 30 December 2008; accepted (revised) 24 July 2009

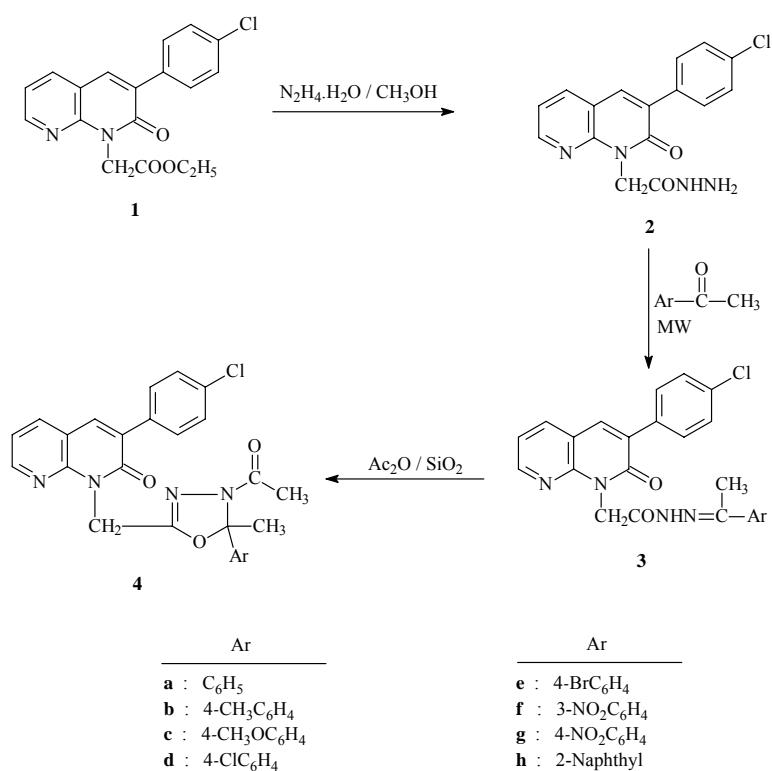
A convenient synthesis of 1-(4-acetyl-5-aryl-5-methyl-[1,3,4]oxadiazol-2-ylmethyl)-3-(4-chlorophenyl)-1*H*-[1,8]naphthyridin-2-ones, by cyclization of acetophenone [2-oxo-3-(4-chlorophenyl)-2*H*-[1,8]-naphthyridin-1-yl]methylcarbonylhydrazones with acetic anhydride using silica gel as solid support under microwave irradiation is described. The structural assignments of the compounds are based on their elemental analyses and spectral data.

Keywords: 1,3,4 Oxadiazole, 1,8 naphthyridine, acetophenones, hydrazone, acetic anhydride, silica gel, solid support, microwave irradiation, solvent-free condition

The chemistry of 1,3,4-oxadiazoles has received considerable attention from synthetic organic chemists due to their diverse biological activities¹⁻³. Several research groups have contributed to the development of methods of synthesis of 1,3,4-oxadiazoles⁴⁻⁶. However, these procedures are time consuming and proceed in low yields. Therefore, a convenient and eco-friendly method for the synthesis of 1,3,4-oxadiazoles is highly desirable. Further, 1,8-naphthyridine derivatives have become attractive targets in organic synthesis due to their significant pharmacological activities⁷⁻¹⁰. The solvent-free organic reactions assisted by microwaves in particular, have gained special attention in recent years¹¹⁻¹³. The use of microwave irradiation in organic synthesis can increase the purity of the resulting products, enhance the chemical yield and shorten the reaction time. Solvent-free reaction leads to a clean, eco-friendly and economic technology. Reactions on solid support without using solvent usually with open vessel in domestic microwave ovens are currently in use for synthetic chemist to create eco-friendly atmosphere^{14,15}. In view of these facts, and in continuation of the interest in the microwave-assisted

organic transformations of 1,8-naphthyridine derivatives¹⁶⁻¹⁸, we present herein a rapid and efficient method for the synthesis of 1,3,4-oxadiazolyl 1,8-naphthyridines in solvent-free conditions under microwave irradiation using silica gel as solid support.

The starting compound, [2-oxo-3-(4-chlorophenyl)-2*H*-[1,8]-naphthyridin-1-yl]acetic acid hydrazide **2** was prepared by the hydrazinolysis of ethyl-[2-oxo-3-(4-chlorophenyl)-2*H*-[1,8]-naphthyridin-1-yl]acetate **1**, which was in turn obtained by the alkylation of 1,2-dihydro-3-(4-chlorophenyl)-2*H*-[1,8]-naphthyridin-2-one with ethyl chloroacetate in DMF in the presence of anhydrous K₂CO₃ under microwave irradiation¹⁸.


Condensation of **2** with various acetophenones in the presence of catalytic amount of DMF under microwave irradiation furnished the corresponding hydrazones, acetophenone [2-oxo-3-(4-chlorophenyl)-2*H*-[1,8]-naphthyridin-1-yl]methylcarbonylhydrazones **3** in excellent yields.

The hydrazones **3** on treatment with acetic anhydride under microwave irradiation using silica gel as solid support resulted in the formation of the desired 1-(4-acetyl-5-aryl-5-methyl-[1,3,4]oxadiazol-2-ylmethyl)-3-(4-chlorophenyl)-1*H*-[1,8]naphthyridin-2-ones **4** (**Scheme I**).

The cyclization reactions progressed efficiently to completion giving very good yields at ambient pressure within a few minutes. The products were obtained with a high degree of purity by this procedure and no further purification was required. The experimental procedure is very simple. The process is environmentally benign.

In a typical case, a mixture of hydrazone **3a** (Ar = C₆H₅) and Ac₂O deposited on silica gel, was exposed to microwave irradiation at 400 W intermittently at 30 s intervals for 4.0 min. The reaction was allowed to attain RT and extracted with methanol. After usual work-up 1-(4-acetyl-5-phenyl-5-methyl-[1,3,4]oxadiazol-2-ylmethyl)-3-(4-chlorophenyl)-1*H*-[1,8]naphthyridin-2-one **4a** (Ar = C₆H₅) was obtained in 85% yield.

The reaction proceeds to only a minor extent (5-10% in 4.0-5.5 min) when conducted under conventional conditions in an oil-bath preheated to 120°C (highest observed temperature during irradia-

Scheme I

tion) thus demonstrating the advantage of the microwave heating method.

The reaction is general applicability and the different 1,3,4-oxadiazolyl 1,8-naphthyridines **4** synthesized are given in **Table I**.

The structures of the compounds **3** and **4** were confirmed by their elemental analyses, IR and ¹H NMR spectroscopy.

In conclusion, we have devised a simple and useful method for the synthesis of 1,3,4-oxadiazoles under mild and environmentally safe reaction conditions. The experimental simplicity, high yields, short reaction times, mild reaction conditions, high purity and absence of solvent are the noteworthy advantages of the present procedure.

Experimental Section

Melting points were recorded by means of a Cintex melting point apparatus and are uncorrected. The homogeneity of the compounds was checked using precoated TLC plates (Merk, 60F-254). IR spectra were recorded in KBr pellets on a Perkin-Elmer Spectrum BX series FT-IR spectrophotometer. ¹H NMR Spectra on a Varian Gemini 400 MHz spectrometer using TMS as internal standard and mass

Table I—Physical characterization data of compounds **3** and **4**

Compd	Ar	Reaction Time (min)	m.p. (°C)	Yield (%)
3a	C ₆ H ₅	1.5	244	94
3b	4-CH ₃ C ₆ H ₄	2.0	236	96
3c	4-CH ₃ OC ₆ H ₄	2.0	210	94
3d	4-ClC ₆ H ₄	1.0	246	98
3e	4-BrC ₆ H ₄	1.0	232	96
3f	3-NO ₂ C ₆ H ₄	1.0	200	95
3g	4-NO ₂ C ₆ H ₄	1.0	174	97
3h	2-Naphthyl	1.5	208	95
4a	C ₆ H ₅	4.0	210	85
4b	4-CH ₃ C ₆ H ₄	5.5	192	87
4c	4-CH ₃ OC ₆ H ₄	5.0	184	86
4d	4-ClC ₆ H ₄	3.5	205	88
4e	4-BrC ₆ H ₄	4.0	198	86
4f	3-NO ₂ C ₆ H ₄	4.5	180	84
4g	4-NO ₂ C ₆ H ₄	5.5	120	86
4h	2-Naphthyl	4.5	184	85

spectra on a VG Micromass 7070H spectrometer. Elemental analyses were performed on a Perkin-Elmer 240 CHN elemental analyser. Microwave irradiation

was carried out in an LG MG-556p domestic microwave oven.

General procedure for the synthesis of acetophenone[2-oxo-3-(4-chlorophenyl)-2H-[1,8]naphthyridin-1-yl]methylcarbonylhydrazones 3. A mixture of [2-oxo-3-(4-chlorophenyl)-2H-[1,8]naphthyridin-1-yl]-acetic acid hydrazide **2** (0.01 mole), acetophenone (0.01 mole) and DMF (5 drops) was subjected to microwave irradiation at 200 W intermittently at 30 s intervals for the specified time (**Table I**). On completion of reaction, as monitored by TLC, the reaction mixture was cooled and treated with chilled water. The precipitate thus obtained was filtered, washed with water and recrystallized from ethanol to afford **3**.

3a: IR (KBr): 3432 (NH), 1647 (ring C=0), 1629 (CONH), 1592 cm⁻¹ (C=N); ¹H NMR (CDCl₃): δ 2.22 (s, 3H, CH₃), 5.85 (s, 2H, CH₂), 7.95 (m, 1H, C₆-H), 8.10 (s, 1H, C₄-H), 8.28 (m, 1H, C₅-H), 8.58 (m, 1H, C₇-H), 6.90-7.80 (m, 9H, Ar-H), 9.38 (s, 1H, CONH); MS: *m/z* 430 (M⁺). Anal. Calcd for C₂₄H₁₈N₄O₂Cl: C, 66.90; H, 4.31; N, 13.00. Found: C, 66.74; H, 4.35; N, 13.07%.

3b: IR (KBr): 3430 (NH), 1652 (ring C=0), 1625 (CONH), 1590 cm⁻¹ (C=N); ¹H NMR (CDCl₃): δ 2.15 (s, 3H, CH₃), 2.28 (s, 3H, N=C-CH₃), 5.82 (s, 2H, CH₂), 7.98 (m, 1H, C₆-H), 8.18 (s, 1H, C₄-H), 8.26 (m, 1H, C₅-H), 8.53 (m, 1H, C₇-H), 7.00-7.92 (m, 8H, Ar-H), 9.45 (s, 1H, CONH); MS: *m/z* 444 (M⁺). Anal. Calcd for C₂₅H₂₁N₄O₂Cl: C, 67.49; H, 4.72; N, 12.60. Found: C, 67.64; H, 4.76; N, 12.26%.

3c: IR (KBr): 3440 (NH), 1653 (ring C=0), 1628 (CONH), 1580 cm⁻¹ (C=N); ¹H NMR (CDCl₃): δ 2.24 (s, 3H, CH₃), 3.82 (s, 3H, OCH₃), 5.90 (s, 2H, CH₂),

7.98 (m, 1H, C₆-H), 8.25 (s, 1H, C₄-H), 8.50 (m, 1H, C₅-H), 8.65 (m, 1H, C₇-H), 7.05-7.90 (m, 8H, Ar-H), 9.40 (s, 1H, CONH); MS: *m/z* 460 (M⁺). Anal. Calcd for C₂₅H₂₁N₄O₃Cl: C, 65.15; H, 4.56; N, 12.16. Found: C, 65.32; H, 4.61; N, 12.23%.

3d: IR (KBr): 3428 (NH), 1654 (ring C=0), 1625 (CONH), 1586 cm⁻¹ (C=N); ¹H NMR (CDCl₃): δ 2.18 (s, 3H, CH₃), 5.52 (s, 2H, CH₂), 7.90 (m, 1H, C₆-H), 8.15 (s, 1H, C₄-H), 8.25 (m, 1H, C₅-H), 8.50 (m, 1H, C₇-H), 7.18-7.80 (m, 8H, Ar-H), 9.36 (s, 1H, CONH); MS: *m/z* 464 (M⁺). Anal. Calcd for C₂₄H₁₈N₄O₂Cl₂: C, 61.93; H, 3.87; N, 12.04. Found: C, 61.75; H, 3.92; N, 12.11%.

3e: IR (KBr): 3425 (NH), 1652 (ring C=0), 1626 (CONH), 1585 cm⁻¹ (C=N); ¹H NMR (CDCl₃): δ 2.20 (s, 3H, CH₃), 5.80 (s, 2H, CH₂), 7.92 (m, 1H, C₆-H), 8.12 (s, 1H, C₄-H), 8.20 (m, 1H, C₅-H), 8.48 (m, 1H,

C₇-H), 7.20-7.86 (m, 8H, Ar-H), 9.42 (s, 1H, CONH); Anal. Calcd for C₂₄H₁₈N₄O₂ClBr: C, 56.52; H, 3.53; N, 10.99. Found: C, 56.78; H, 3.57; N, 11.07%.

3f: IR (KBr): 3434 (NH), 1654 (ring C=0), 1630 (CONH), 1588 cm⁻¹ (C=N); ¹H NMR (CDCl₃): δ 2.23 (s, 3H, CH₃), 5.86 (s, 2H, CH₂), 7.92 (m, 1H, C₆-H), 8.17 (s, 1H, C₄-H), 8.28 (m, 1H, C₅-H), 8.52 (m, 1H, C₇-H), 7.17-7.82 (m, 8H, Ar-H), 9.38 (s, 1H, CONH); Anal. Calcd for C₂₄H₁₈N₅O₄Cl: C, 60.56; H, 3.78; N, 14.72. Found: C, 60.72; H, 3.82; N, 14.80%.

3g: IR (KBr): 3450 (NH), 1654 (ring C=0), 1628 (CONH), 1586 cm⁻¹ (C=N); ¹H NMR (CDCl₃): δ 2.26 (s, 3H, CH₃), 5.92 (s, 2H, CH₂), 7.95 (m, 1H, C₆-H), 8.10 (s, 1H, C₄-H), 8.28 (m, 1H, C₅-H), 8.50 (m, 1H, C₇-H), 7.20-7.80 (m, 8H, Ar-H), 9.40 (s, 1H, CONH); Anal. Calcd for C₂₄H₁₈N₅O₄Cl: C, 60.56; H, 3.78; N, 14.72. Found: C, 60.74; H, 3.81; N, 14.79%.

3h: IR (KBr): 3435 (NH), 1653 (ring C=0), 1627 (CONH), 1587 cm⁻¹ (C=N); ¹H NMR (CDCl₃): δ 2.25 (s, 3H, CH₃), 5.82 (s, 2H, CH₂), 7.98 (m, 1H, C₆-H), 8.15 (s, 1H, C₄-H), 8.26 (m, 1H, C₅-H), 8.54 (m, 1H, C₇-H), 7.18-7.87 (m, 1H, Ar-H), 9.46 (s, 1H, CONH); Anal. Calcd for C₂₈H₂₁N₄O₂Cl: C, 69.93; H, 4.37; N, 11.65. Found: C, 70.10; H, 4.42; N, 11.72%.

General procedure for the synthesis of 1-(4-acetyl-5-aryl-5-methyl-[1,3,4]oxadiazol-2-ylmethyl)-3-(4-chlorophenyl)-1H-[1,8]naphthyridin-2-ones 4. Silica gel (3 g) was added to the mixture of hydrazone **3** (0.01 mole) and Ac₂O (2 mL) at RT. The reaction mixture was thoroughly mixed and adsorbed material was dried in air and irradiated in microwave oven at 400 W intermittently at 30 s intervals for the time indicated in **Table I**. The reaction mixture was cooled and the product was extracted with methanol. Dilution of methanol solution with ice-cold water gave the crude product, which was filtered, washed with water and recrystallization from methanol to give **4**.

4a: IR (KBr): 1734 (COCH₃), 1654 (C=0 naphthyridine), 1586 cm⁻¹ (C=N); ¹H NMR (CDCl₃): δ 2.20 (s, 3H, CH₃), 2.32 (s, 3H, COCH₃), 5.42 (s, 2H, CH₂), 7.82 (m, 2H, C₄-H, C₆-H), 7.93 (m, 1H, C₅-H), 8.50 (m, 1H, C₇-H), 7.18-7.68 (m, 9H, Ar-H); MS: *m/z* 472 (M⁺). Anal. Calcd for C₂₆H₂₁N₄O₃Cl: C, 66.03; H, 4.44; N, 11.85. Found: C, 66.62; H, 4.49; N, 11.92%.

4b: IR (KBr): 1724 (COCH₃), 1654 (C=0 naphthyridine), 1582 cm⁻¹ (C=N); ¹H NMR (CDCl₃): δ 2.18 (s, 3H, CH₃), 2.22 (s, 3H, CH₃), 2.45 (s, 3H, COCH₃), 5.45 (s, 2H, CH₂), 7.93 (m, 2H, C₄-H, C₆-H), 8.12 (s, 1H, C₅-H), 8.52 (m, 1H, C₇-H), 7.16-7.72 (m, 8H, Ar-H); MS: *m/z* 486 (M⁺). Anal. Calcd for

$C_{27}H_{23}N_4O_3Cl$: C, 66.60; H, 4.72; N, 11.51. Found: C, 66.67; H, 4.76; N, 11.58%.

4c: IR (KBr): 1722 (COCH₃), 1652 (C=0 naphthyridine), 1585 cm⁻¹ (C=N); ¹H NMR (CDCl₃): δ 2.15 (s, 3H, CH₃), 2.35 (s, 3H, COCH₃), 3.85 (s, 3H, OCH₃), 5.38 (s, 2H, CH₂), 7.90 (m, 1H, C₄-H, C₆-H), 8.15 (s, 1H, C₅-H), 8.60 (m, 1H, C₇-H), 7.15-7.80 (m, 8H, Ar-H); MS: *m/z* 502 (M⁺). Anal. Calcd for C₂₇H₂₃N₄O₄Cl: C, 64.47; H, 4.57; N, 11.14. Found: C, 64.62; H, 4.61; N, 11.22%.

4d: IR (KBr): 1730 (COCH₃), 1654 (C=0 naphthyridine), 1580 cm⁻¹ (C=N); ¹H NMR (CDCl₃): δ 2.18 (s, 3H, CH₃), 2.33 (s, 3H, COCH₃), 5.35 (s, 2H, CH₂), 7.88 (m, 2H, C₄-H, C₆-H), 8.12 (s, 1H, C₅-H), 8.48 (m, 1H, C₇-H), 7.10-7.78 (m, 8H, Ar-H); MS: *m/z* 506 (M⁺). Anal. Calcd for C₂₆H₂₀N₄O₃Cl₂: C, 61.53; H, 3.94; N, 11.04. Found: C, 61.70; H, 3.98; N, 11.12%.

4e: IR (KBr): 1732 (COCH₃), 1652 (C=0 naphthyridine), 1588 cm⁻¹ (C=N); ¹H NMR (CDCl₃): δ 2.16 (s, 3H, CH₃), 2.30 (s, 3H, COCH₃), 5.40 (s, 2H, CH₂), 7.95 (m, 2H, C₄-H, C₆-H), 8.08 (m, 1H, C₅-H), 8.52 (m, 1H, C₇-H), 7.14-7.80 (m, 8H, Ar-H); Anal. Calcd for C₂₆H₂₀N₄O₃ClBr: C, 56.57; H, 3.62; N, 10.15. Found: C, 56.75; H, 3.66; N, 10.22%.

4f: IR (KBr): 1724 (COCH₃), 1654 (C=0 naphthyridine), 1580 cm⁻¹ (C=N); ¹H NMR (CDCl₃): δ 2.15 (s, 3H, CH₃), 2.56 (s, 3H, COCH₃), 5.80 (s, 2H, CH₂), 7.80 (m, 2H, C₄-H, C₆-H), 8.24 (m, 1H, C₅-H), 8.50 (m, 1H, C₇-H), 7.12-7.70 (m, 8H, Ar-H); Anal. Calcd for C₂₆H₂₀N₅O₅Cl: C, 60.29; H, 3.86; N, 13.53. Found: C, 60.47; H, 3.90; N, 13.60%.

4g: IR (KBr): 1728 (COCH₃), 1653 (C=0 naphthyridine), 1582 cm⁻¹ (C=N); ¹H NMR (CDCl₃): δ 2.18 (s, 3H, CH₃), 2.25 (s, 3H, COCH₃), 5.82 (s, 2H, CH₂), 7.90 (m, 1H, C₆-H), 8.20 (m, 2H, C₄-H, C₅-H), 8.53 (m, 1H, C₇-H), 7.18-7.80 (m, 8H, Ar-H); Anal. Calcd for C₂₆H₂₀N₅O₅Cl: C, 60.29; H, 3.86; N, 13.53. Found: C, 60.46; H, 3.91; N, 13.59%.

4h: IR (KBr): 1734 (COCH₃), 1652 (C=0 naphthyridine), 1588 cm⁻¹ (C=N); ¹H NMR (CDCl₃): δ 2.20 (s, 3H, CH₃), 2.35 (s, 3H, COCH₃), 5.60 (s, 2H, CH₂),

7.90 (m, 2H, C₄-H, C₆-H), 8.20 (m, 1H, C₅-H), 8.48 (m, 1H, C₇-H), 7.15-7.85 (m, 11H, Ar-H); Anal. Calcd for C₃₀H₂₃N₄O₃Cl: C, 73.92.29; H, 4.72; N, 11.50. Found: C, 74.08; H, 4.76; N, 11.58%.

Acknowledgement

The authors are thankful to the Director, IICT Hyderabad for providing ¹H NMR spectral data.

References

- 1 Omar F A, Mahfouz N M & Rahman M A, *Eur J Med Chem Chim Ther*, 31, **1996**, 819.
- 2 Hui X P, Chu C H & Zhang Z Y, *Indian J Chem*, 41B, **2002**, 2176.
- 3 Mohan T P, Vishalakshi B, Bhat K S & Kendappa G N, *Indian J Chem*, 43B, **2004**, 1798.
- 4 Chiba T & Misuhiro O, *J Org Chem*, 57, **1992**, 1375.
- 5 Bacu E, Couture A & Grandclaudan P, *Synth Commun*, 33, **2003**, 143.
- 6 Bhat K S, Karthikeyan M S, Holla B S & Shetty N S, *Indian J Chem*, 43B, **2004**, 1765.
- 7 Bouzard D, DiCesare P, Essiz M, Jacquet J P, Ledoussal B, Remuzon P, Kessler R E & Fung Tome J, *J Med Chem*, 35, **1992**, 518.
- 8 Zhang S X, Bastow K F, Tachibana Y, Kuo S C, Hamel E, Mauger A, Narayanan V L & Lew K H, *J Med Chem*, 42, **1999**, 4081.
- 9 Roma G, Braccio M D, Grassi G, Mattioli F & Ghai M, *J Med Chem*, 35, **2000**, 1021.
- 10 Badawneh M, Ferrarini P L, Calderone V, Manera C, Martinotti E, Mari C, Saccomanni G & Testai L, *J Med Chem*, 36, **2001**, 925.
- 11 Caddick S, *Tetrahedron*, 51, **1995**, 10403.
- 12 Loupy A, Petit A, Hamelin J, Texiert-Boulet F, Jacquault P & Mathe D, *Synthesis*, **1998**, 1213.
- 13 Lidstrom P, Tierney J, Wathey B & Westman J, *Tetrahedron*, 57, **2001**, 9225.
- 14 Loupy A, Petit A, Hamelin J, Dela Diez-Barra E, Loupy A & Langa F, *Synlett*, **1995**, 1259.
- 15 Varma R S, Kumar D & Liesen P J, *J Chem Soc Perkin Trans I*, **1998**, 4093.
- 16 Mogilaiah K, Prashanthi M, Kavitha S & Reddy N V, *J Chem Res*, **2005**, 523.
- 17 Mogilaiah K, Uma Rani J, Sakram B & Reddy N V, *J Heterocyclic Chem*, 43, **2006**, 485.
- 18 Mogilaiah K, Kavitha S, Shiva Kumar K & Kumaraswamy T, *Heteroatom Chem*, in press.